3 research outputs found

    AN ENHANCED DIFFERENTIAL EVOLUTION ALGORITHM WITH ADAPTIVE WEIGHT BOUNDS FOR EFFICIENT TRAINING OF NEURAL NETWORKS

    Get PDF
    Artificial neural networks are essential intelligent tools for various learning tasks. Training them is challenging due to the nature of the data set, many training weights, and their dependency, which gives rise to a complicated high-dimensional error function for minimization. Thus, global optimization methods have become an alternative approach. Many variants of differential evolution (DE) have been applied as training methods to approximate the weights of a neural network. However, empirical studies show that they suffer from generally fixed weight bounds. In this research, we propose an enhanced differential evolution algorithm with adaptive weight bound adjustment (DEAW) for the efficient training of neural networks. The DEAW algorithm uses small initial weight bounds and adaptive adjustment in the mutation process. It gradually extends the bounds when a component of a mutant vector reaches its limits. We also experiment with using several scales of an activation function with the DEAW algorithm. Then, we apply the proposed method with its suitable setting to solve function approximation problems. DEAW can achieve satisfactory results compared to exact solutions

    Reviews on Physically Based Controllable Fluid Animation

    Get PDF
    In computer graphics animation, animation tools are required for fluid-like motions which are controllable by users or animator, since applying the techniques to commercial animations such as advertisement and film. Many developments have been proposed to model controllable fluid simulation with the need in realistic motion, robustness, adaptation, and support more required control model. Physically based models for different states of substances have been applied in general in order to permit animators to almost effortlessly create interesting, realistic, and sensible animation of natural phenomena such as water flow, smoke spread, etc. In this paper, we introduce the methods for simulation based on physical model and the techniques for control the flow of fluid, especially focus on particle based method. We then discuss the existing control methods within three performances; control ability, realism, and computation time. Finally, we give a brief of the current and trend of the research areas

    Reviews on Physically Based Controllable Fluid Animation

    No full text
    corecore